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A8STRACT

Hueckel’s edge detector finds the best—fitting ideal
step edge to a given picture neighborhood, by expanding
the neighborhood and step edge in terms of a set of
nine basis functions. The simplest case of this ap-
proach uses a 2-by-2 neighborhood and three basis func- 4
tions. This case is solved explicitly using elementaryIT methods. The magnitude of the best-fitting step edge
for the neighborhood

AB
CD

turns out to be the Roberts operator max (IA- DI,IB-CI).
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1. Introduction

Hueckel [1-21 developed an approach to edge detection based

on fitting an ideal step edge to a given picture neighborhood.

The f i tting was done by expanding both the step edge and the

neighborhood in terms of a set of orthogonal basis functions,

and minimizing the sum of the squared differences between

corresponding coefficients. To simplify the computation , the

expansion is truncated; Hueckel used a nine—term expansion.

Several simplifications of Hueckel’ s approach have also

been investigated. Nevatia [3] used a subset of Hueckel’s

basis; O’Gorman [4 1 used a set of two-dimensional Walsh func-

tions defined on a square; Meró and Vâssy [5] used only two

basis functions , def ined by diagonally subdividing a square ,

to determine edge orientation ; and Hurnmel [6] used a set of

¶ optimal basis functions derived from the Karhunen-Lo~ve expan-

sion of the local image values. j
In this correspondence we present an elementary treat-

ment of edge fitting in the simplest possible nontrivial case.

• We use a 2-by-2 picture neighborhood ~~ , and a step function

s(x,y) passing through the center of this neighborhood (which

we take to be the origin), defined by

ía if x sin O~~~y cos 8
• s(x,y) = .~
• l b otherwise

We use only three basis functions, namely
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It turns out that the magnitude of the best-fitting step

edge derived in this way is just max (IA-D J ,IB— CI ), the Roberts

operator [7]. Thus this correspondence has two purposes: to

illustrate how Hueckel—type edge detectors can be derived using

elementary methods , and to provide a new motivation for the max

version of the Roberts operator.
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2. Derivation

Let the coefficients of f(x,y) with respect to

these basis functions be f 0,f1, and f 2, respectively ; then

readily we have

= (A+B+C+D )/4 S/4

f1 
= (—A—B+C+D) /4 ( 1)

= (A- B+C-D)/4

Simi larly , let the coefficients of s(x,y ) be ~~~~~~ and

then readily

= (a+b)/2

= 
~~~~~

. (b—a) + (a—b ) = 
2 9— n  (b—a) if 0 s e s n

= .~j.!L (a—b) + ~~~~~~~ (b—a) 
3 n— 2 e  

(b-a) if ~ ~ e s 2,t 
(2 )

• 
~2 

= (b-a) + (a-b) (b-a) if - s e
Zn 2n IT

s—i. ~ —e
= -~~~~~ (a-b) + -

~~~~~~~
-- (b—a) (b—a) if ~ a s

We now want to minimize E2 , (f
0

.5
0

) 2 
+ (f1—s1)

2 
+ (f2—s2)

2;

because of the way 
~i 

and 
~2 

are defined, this must be done

separately for a in each quadrant. Actually, since a and b

• are interchangeable, by symmetry it suffices to treat the first

and second quadrants. In fact, in (2), if we replace a by

e+n and interchange a and b in 3IT;28 (b—a) , we obtain 2e— n (b-a) ;

and similarly ~~~ (b—a ) yields (b—a) .
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In the first quadrant we have

E
2 (S - a+b)2 + (

_A_B+C+D 
— 

20n (b—a))2

(3)

+ ~A—B+C-D - ~~
. (b-a)) 2

Taking partial derivatives of C 3) with respect to a and b

and setting them equal to zero, we obtain

— ~~~ (S — + 
28—n (~A~B+C+D — 

28—n (b— )]2 1  2 2n 4 2n a

+ ~.[A B ~C D  - ~~ (b-a)] = 0
( 4 )

— 
1 [ S 

— 
a+b 

~ — 
2 9—n 1—A— B+C+D 

— 
20—IT (b— )]2 1  T 2n 4 2n a

- 
8 1

A-B+C-D 
- (b-a)] = 0

Adding gives immediately S/4 (a+b)/2, or a+b S/2, as in

the previous solution. Taking the partial derivative of (3)

with respect to 6 and equating it to zero gives

A 8+C+D 
- ~~~~ (b—a) I + (A-B+C-D - ,Q. (b—a) 1 0 (5)

or

• 

C—B 46—n
2n (b—a )

• so that (48—n ) (b—a)/n a — B (6)

Also, substituting S/4 — (a+b)/2 and (5) in either equation

of (4 ) gives
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A—B+C+D 
— 

26—n (b—a) = 0 (7)

so that we also have

A-B+C-D e
4 —~~~ (b—a )=0 (8)

If 0 is not 0 or n/2, and b ~ a, we can divide ( 7 )  by

8) (or vice versa) to obtain

A—B+C-D 6
-A-B+C+D (9)

from which we readily have

0(2A-2D) = 
~~
. (A- B+C-D)

or (i f A ~~~D)

(10)

k Combining this with (8) gives b-a = A-D, and combining this

with b+a = S/2 gives

a a (-A+B+C+3D)/4 — s/4 - (A-D)/2
(11)

b — (3A+B+C-D)/4 = S/4 + (A-D)/2

Note that by (7 )
~, (8 ), and the fact that a+b = S/2, we actually

• have E2 — 0 for this solution. It is easily verified that if

we assume 6 = 0 or 9 = ~ in (3), and set the partial deriva-

tives with respect to a and b equal to zero, we obtain •
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special cases of this solution . In fact, for 6 = 0, we find

that A+C = B+D , b = (A+B)/2, and a (C+D)/2 while for e =
we get A+B = C+D, b = (A+C)/2 , and A = (B+D)/2.

In the second quadrant, analogously, we get

a = (A+38—C+D)/4 = S/4 - (C-B)/2
(12)

b = (A-B+ 3C+D)/4 = S/4 + (C-B)/2

and

A—D
0 — 1 ( 3  

~~~~~~ 
(13)

It can be verified that the first and secønd quadrant solutions

agree if e = n/2. Moreover, note that for (10) to actually lie

in the first quadrant we must have

— 1 5~~E~~ 5l

which is evidently equivalent to l B-C l s ~A-D~. Similarly,

for (13) to actually lie in the second quadrant we must

have

which is evidently equivalent to IA-D I S B—Cl . Thus by compar-

ing the magnitudes and signs of A-D and B-C we can choose

the appropriate best-fitting step edge for the given neighbor-

hood ~~~~~~~. Note that if A-D = B-C we have 6 = 0 in (10) and
B — n  in (13); moreover, in this case (11) and (12) also agree,

with a and b interchanged. Similarly, if A-D = C-B, we

t have 6 — in both (10) and (13), and here (11) and (12) agree

too.
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In summary , the “best—fitting” step edge to is found

as follows:

If B—C l s A—D f, then $ = ~~
. [1 — 

~~~~~ and a,b are
given by (11)

If I B—C l ~ )A—D , then 8 = ~ (3 + ~~~~ and a, b are
given by (12)

The magnitude t a-b i of the edge is IA-D I in the first case,

and j B-C~ in the second case; in other words, the magnitude

is max (JA-D I,IB-CI). Note that this is just the magnitude of

the Roberts operator, using the max of the absolute differences

rather than the square root of the sum of the squares [7].

(The slope 6, on the other hand, is not the arc tangent of the

ratio of these differences; but its value is reasonable, e.g.,
AB 12Lf~~~~~~34 we get 8=~~.)

I - 4
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3. Conclusion

We have presented an elementary derivation of step edge

fitting in the simplest nontrivial case: a 2—by— 2 neighbor-

hood and three basis functions. It turns out that the magni—

tude of the best-fitting edge to is max (JA-D I ,JB—C l ),

which is a commonly used version of the Roberts edge detector;

thus our derivation provides a new motivation for that detector.
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